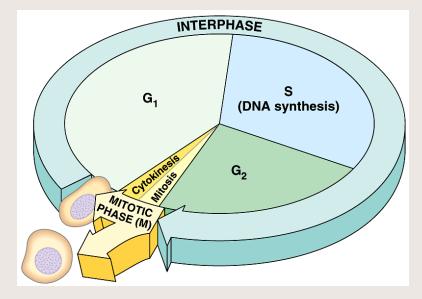
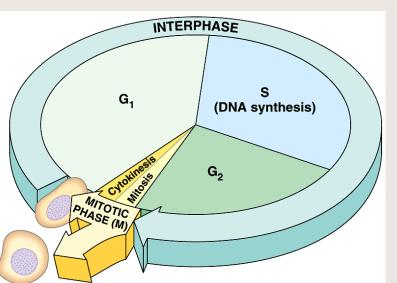
Aim: What is the cell cycle?

The ability of organisms to reproduce their kind is one characteristic that best distinguishes living things from nonliving matter.

- Cell cycle events that occur in the life of a cell.
- Life span of a cell varies:
 - A) bacteria 20 minutes
 - B) most plant cells 10 to 30 hours
 - C) most animal cells 18 to 24 hours

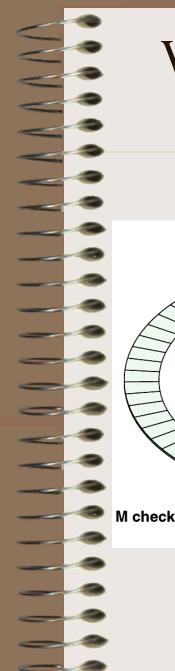

What are the stages of the cell cycle? (2)

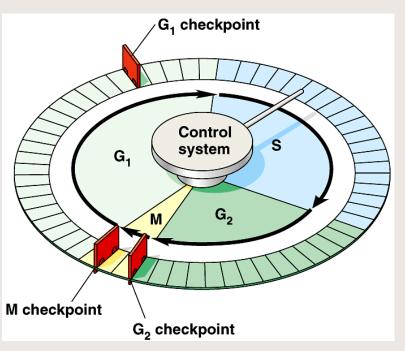
- Stages in the cell cycle:
- I: Interphase (no cell division)
 - 1) $G_1 = \text{cell } \underline{grows}$ in size as it performs most of the metabolic processes. 42%
 - 2) S = synthesis of DNA in preparation for cell division (mitosis) 37%
 - (-3) G₂ = cell ends DNA synthesis and prepares for mitosis by producing various mitotic enzymes 17%
- II: mitosis cell actually divides. (4%)



What are the stages of the cell cycle? (3)

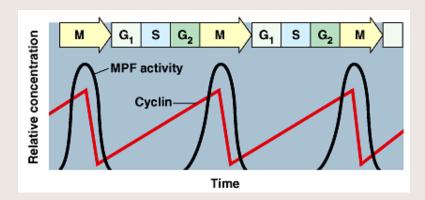
- Each phase of the cycle may have different duration (time span) depending upon its chemical environment.
- Embryonic cells have no real G₁ stage
- Liver cells may never leave G₁ unless they are stimulated in an emergency.


What are the stages of the cell cycle? (4)


- Mature skeletal and nerve cells never leave G₁.
 These cells are called G₀ cells.
- Heart muscle cells stop at G₂. Chromosomes have doubled but do not go through mitosis. Reason evades biologists.

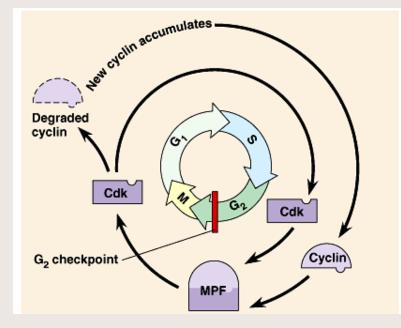
What controls the progress from one stage to another? (1)

- The cell cycle is controlled by a molecular signaling system that cyclically switches the cell's metabolism on and off.
- This signaling system has *checkpoints* in the G_1 , G_2 and M stages of the cell cycle.
- The cell cycle doesn't advance beyond these checkpoints unless certain conditions are strictly met. (favorable environment, proper size, enough DNA)
- For most cells, the G_1 checkpoint, known as the *restriction checkpoint*, is the most important. If the cell gets beyond this checkpoint, it is likely that it will divide by mitosis.


What controls the progress from one stage to another? (2)

- The ordered sequence of cell cycle events is synchronized by rhythmic changes in the activity of protein kinases.
- Kinases are enzymes that catalyze the transfer of a phosphate group from ATP to a target protein.
- Phosphorylation either activates or inactivates the target protein.

What controls the progress from one stage to another? (3)


- The levels of these kinases are present in constant amounts, but these kinases require a second protein, a cyclin, to become activated
 - Level of cyclin proteins fluctuate cyclically.
 - The complex of kinases and cyclin forms cyclindependent kinases (Cdks).

What controls the progress from one stage to another? (4)

- Cyclins are regulatory proteins. Their levels change <u>cyclically</u> during the cell cycle.
 - Cyclin levels rise sharply throughout interphase, then fall abruptly during mitosis.

How cyclins work

- S-cyclin activity:
- 1) As G_1 begins, protein kinase₁ is inactive.
- 2) S-cyclin is produced and begins to bind to protein kinase₁, activating it. The complex is called cdk_s
- 3) When there is enough cdk_s in the cell, it
 overcomes the G₁ checkpoint and the cell enters S
 phase. Cdk_s phosphorylates a chemical messenger.
 - 4) The chemical messenger is now activated and:
 - regulates DNA replication
 - destroys S-cyclin, ending all former G_1 activity

How cyclins work (2)

- M-cyclin
- 1) As S stage begins, inactive protein kinase₂ is in the cytoplasm.
- 2) M-cylin is synthesized and starts to bind to protein kinase₂, activating it. The complex is called cdk_M (M-promoting factor)
- 3) When there is enough cdk_M in the cell, it overcomes the S checkpoint and the cell begins mitosis.
- 4) Cdk_M activates a different messenger which:
 - Triggers mitosis (chromosome condensing and nuclear envelope dispersion)
- Destroys M-cyclin, ending all S stage activity