## Aim: How is mRNA translated?

## Ribosome function

■ Free ribosomes synthesize cytoplasmic proteins/enzymes.

- ER-bound ribosomes make proteins for the nucleus, ER, golgi, lysosomes, vacuoles, and cell membranes.


## Ribosome structure

- 1) made up of 2 subunits (large and small) that unite only when mRNA are present.
- 2) subunits are made up of rRNA, structural proteins and enzymes
- Large = 2 rRNA + 35 proteins
- Small $=1$ rRNA +20 proteins
$\square 3)$ rRNA is made in the nucleoli


## Mahlon Hoagland (Harvard) discovered tRNA

- tRNA contains 7393 nucleotides
- Clover-leaf shape (2D)
- tRNA binds to specific amino acid molecule
- 45 types of tRNA (redundancy)

(a) Two-dimensional structure


## tRNA



- An enzyme, amino-acyl-tRNA-synthetase, catalyzes the union of tRNA-amino acid at the 3' end.
- The anticodons of some tRNAs recognize more than one codon. (wobble effect)


## amino-acyl-tRNA-synthetase,



## DNA Translation

- Polypeptides are made by ribosomes.
- This process involves:
- Small ribosomal subunit
- Large ribosomal subunit
- Ribosomal enzymes
- mRNA + tRNA
- ATP \& GTP (guanosine triphosphate)
- GTP is another energy molecule like ATP.

(a) Computer model of functioning ribosome


## DNA Translation - Initiation

- Translation can be divided into three phases:
- Initiation
- Elongation
- Termination
- Protein factors assist all three phases.



## DNA Translation - Initiation (2)

- 1) small ribosomal unit binds to mRNA and a special initiator tRNA.
- In prokaryotes - at leader of mRNA
- In eukaryotes - at 5' cap
- Initiator tRNA attaches to the start codon AUG. It carries methionine amino acid.



## DNA Translation - Initiation (3)

- 2) large ribosomal unit binds to small ribosomal unit creating a translation initiation complex (TIC)
- Proteins called initiation factors bring the components of TIC
 together. Energy for the process comes from GTP


## - Each ribosome has a binding site for mRNA and three binding sites for tRNA molecules.

$\cdot$ The $\mathbf{P}$ site holds the tRNA carrying the growing polypeptide chain.
-The A site carries the tRNA with the next amino acid.
-Discharged tRNAs leave the ribosome at the $\mathbf{E}$ site.

(b) Schematic model showing binding sites
(c) Schematic model with mRNA and tRNA

## DNA Translation - Elongation (1)



- 1) Codon recognition - at A site, the anitcodon of a tRNA binds to the mRNA codon by hydrogen bonds.
■ Two molecules of GTP are needed.
Elongation factors assist.


## DNA Translation - Elongation (2)

- 2) Peptide bond formation:
- Large ribosomal unit acts as a ribozyme and catalyzes a peptide bond formation between the 2 amino acids.
- Bond holding the amino acid on the P site tRNA breaks.



## DNA Translation - Elongation (3)

- 3) Translocation:

- Ribosome moves tRNA in $A$ site to $P$ site.
- tRNA from $P$ site moves to $E$ site and then out.
- A GTP molecule provides energy for translocation
- Remember - ribosome moves towards the $3^{\prime}$ end. (5' to 3')


## DNA Translation - Termination

- Termination occurs when the ribosome moves the termination codon (stop codon) into the A site.
- A protein called the release factor cause water and not tRNA to
 bind.
- Hydrolysis occurs and everything disconnects.


1
(2)

3

## - Typically a single mRNA is used to make many

 copies of a polypeptide simultaneously.-Multiple ribosomes, polyribosomes, may trail along the same mRNA.

- A ribosome requires less than a minute to translate an average-sized mRNA into a polypeptide.

(a) An mRNA molecule is generally translated simultaneously by several ribosomes in clusters called polyribosomes.

(b) This micrograph shows a large polyribosome in a prokaryotic cell (TEM).


## Post-Translational Modifications

-During and after synthesis, a polypeptide coils and folds to its three-dimensional shape spontaneously.
$\cdot$ In addition, proteins may require posttranslational modifications before doing their particular job.
-This may require additions like sugars, lipids, or phosphate groups to amino acids.
-Enzymes may remove some amino acids or cleave whole polypeptide chains.

- Two or more polypeptides may join to form a protein.

