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Overview: The Race to Live

 Young seedlings must outcompete their neighbors 

in the race for resources in order to survive

 Unlike animals, which respond through movement, 

plants must respond to environmental challenges 

by altering their growth and development
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Figure 31.1
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Concept 31.1: Plant hormones help coordinate 
growth, development, and responses to stimuli

 Plant hormones are chemical signals that modify or 

control one or more specific physiological processes 

within a plant



© 2014 Pearson Education, Inc.

 Plant hormones are produced in very low 

concentration, but a minute amount can greatly 

affect growth and development of a plant organ

 Most aspects of plant growth and development are 

under hormonal control
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The Discovery of Plant Hormones

 Any response resulting in curvature of organs 

toward or away from a stimulus is called a tropism

 In the late 1800s, Charles Darwin and his son 

Francis conducted experiments on phototropism, 

a plant’s response to light

 They observed that a grass seedling could bend 

toward light only if the tip of the coleoptile was 

present
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 They postulated that a signal was transmitted from 

the tip to the elongating region
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Figure 31.2
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Figure 31.2a
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Figure 31.2b
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Figure 31.2c

Boysen-Jensen: Phototropism occurs
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 In 1913, Peter Boysen-Jensen demonstrated that 

the signal was a mobile chemical substance
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 In 1926, Frits Went extracted the chemical 

messenger for phototropism, auxin, by modifying 

earlier experiments
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Figure 31.3
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A Survey of Plant Hormones

 The major classes of plant hormones include

 Auxin

 Cytokinins

 Gibberellins

 Brassinosteroids

 Abscisic acid

 Ethylene
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Table 31.1
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Auxin

 The term auxin refers to any chemical that promotes 

elongation of coleoptiles

 Indoleacetic acid (IAA) is a common auxin in plants; 

in this lecture the term auxin refers specifically to IAA

 Auxin is produced in shoot tips and is transported 

down the stem

 Auxin transporter proteins move the hormone from 

the basal end of one cell into the apical end of the 

neighboring cell
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Figure 31.4
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Figure 31.4a
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Figure 31.4b
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 The role of auxin in cell elongation: Polar 

transport of auxin stimulates proton pumps in the 

plasma membrane

 According to the acid growth hypothesis, the proton 

pumps lower the pH in the cell wall, activating 

expansins, enzymes that loosen the wall’s fabric

 With the cellulose loosened, the cell can elongate
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Figure 31.5
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Figure 31.5a
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Figure 31.5b
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 Auxin also alters gene expression and stimulates a 

sustained growth response
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 Auxin’s role in plant development: Polar transport 
of auxin controls the spatial organization of the 
developing plant

 Reduced auxin flow from the shoot of a branch 
stimulates growth in lower branches

 Auxin transport plays a role in phyllotaxy, the 
arrangement of leaves on the stem
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 Practical uses for auxins 

 The auxin indolbutyric acid (IBA) stimulates 

adventitious roots and is used in vegetative 

propagation of plants by cuttings

 An overdose of synthetic auxins can kill plants

 For example 2,4-D is used as an herbicide on eudicots

 Tomato growers spray their plants with synthetic 

auxins to stimulate fruit growth
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Cytokinins

 Cytokinins are so named because they stimulate 

cytokinesis (cell division)
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 Control of cell division and differentiation: 

Cytokinins work together with auxin to control cell 

division and differentiation

 Cytokinins are produced in actively growing tissues 

such as roots, embryos, and fruits
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 Anti-aging effects: Cytokinins slow the aging of 

some plant organs by inhibiting protein breakdown, 

stimulating RNA and protein synthesis, and 

mobilizing nutrients from surrounding tissues
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Gibberellins

 Gibberellins (GAs) have a variety of effects, such as 
stem elongation, fruit growth, and seed germination
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 Stem elongation: Gibberellins stimulate stem and 

leaf growth by enhancing cell elongation and cell 

division

 Gibberellins are produced in young roots and 

leaves

 They can induce bolting, rabid growth of the floral 

stalk
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Figure 31.6

(a) Rosette form (left) and
gibberellin-induced bolting
(right)

(b) Grapes from control
vine (left) and gibberellin-
treated vine (right)
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Figure 31.6a

(a) Rosette form (left) and
gibberellin-induced bolting
(right)
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Figure 31.6b

(b) Grapes from control
vine (left) and gibberellin-
treated vine (right)
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 Fruit growth: In many plants, both auxin and 

gibberellins must be present for fruit to develop

 Gibberellins are used in spraying of Thompson 

seedless grapes
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 Germination: After water is imbibed, release of 

gibberellins from the embryo signals seeds to 

germinate
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Figure 31.7
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Brassinosteroids

 Brassinosteroids are chemically similar to 

cholesterol and the sex hormones of animals

 They induce cell elongation and division in stem 

segments and seedlings

 They slow leaf abscission (leaf drop) and promote 

xylem differentiation
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Abscisic Acid

 Abscisic acid (ABA) slows growth

 Two of the many effects of ABA include

 Seed dormancy

 Drought tolerance
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 Seed dormancy ensures that the seed will 

germinate only in optimal conditions

 In some seeds, dormancy is broken when ABA is 

removed by heavy rain, light, or prolonged cold

 Precocious (early) germination can be caused by 

inactive or low levels of ABA
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Figure 31.8
Red mangrove

(Rhizophora
mangle) seeds
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Figure 31.8a

Red mangrove
(Rhizophora
mangle) seeds
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Figure 31.8b

Coleoptile
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 Drought tolerance: ABA is the primary internal 

signal that enables plants to withstand drought

 ABA accumulation causes stomata to close rapidly
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Ethylene

 Plants produce ethylene in response to stresses 

such as drought, flooding, mechanical pressure, 

injury, and infection

 The effects of ethylene include response to 

mechanical stress, senescence, leaf abscission, 

and fruit ripening
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 The triple response to mechanical stress: 

Ethylene induces the triple response, which allows 

a growing shoot to avoid obstacles

 The triple response consists of a slowing of stem 

elongation, a thickening of the stem, and horizontal 

growth
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 Ethylene-insensitive mutants fail to undergo the triple 

response after exposure to ethylene

 Some ethylene-overproducing mutants undergo the 

triple response even in air but are returned to normal 

growth when treated with ethylene synthesis 

inhibitors

 Other mutants are not responsive to inhibitors of 

ethylene synthesis
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Figure 31.9
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Figure 31.9a
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(a) ein mutant



© 2014 Pearson Education, Inc.

Figure 31.9b
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 Senescence: Senescence is the programmed 

death of cells or organs

 A burst of ethylene is associated with apoptosis, the 

programmed destruction of cells, organs, or 

whole plants
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 Leaf abscission: A change in the balance of auxin 

and ethylene controls leaf abscission, the process 

that occurs in autumn when a leaf falls
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Figure 31.10
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Figure 31.10a
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 Fruit ripening: A burst of ethylene production in a 

fruit triggers the ripening process

 Ethylene triggers ripening, and ripening triggers 

release of more ethylene

 Fruit producers can control ripening by picking 

green fruit and controlling ethylene levels
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Concept 31.2: Responses to light are critical for 
plant success

 Light triggers many key events in plant growth 

and development, collectively known as 

photomorphogenesis
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Photomorphogenesis

 A potato left growing in darkness produces shoots 

that look unhealthy, and it lacks elongated roots

 These are morphological adaptations for growing in 

darkness, collectively called etiolation

 After exposure to light, a potato undergoes 

changes called de-etiolation, in which shoots and 

roots grow normally
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Figure 31.11

(a) Before exposure to light (b) After a week’s exposure
to natural daylight
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Figure 31.11a

(a) Before exposure to light
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Figure 31.11b

(b) After a week’s exposure
to natural daylight



© 2014 Pearson Education, Inc.

 Plants detect not only presence of light but also its 

direction, intensity, and wavelength (color)

 A graph called an action spectrum depicts 

relative response of a process to different 

wavelengths

 Action spectra are useful in studying any process 

that depends on light
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Figure 31.12

(a) Light wavelengths below 500nm induce
curvature.

(b) Blue light induces the most curvature
of coleoptiles.

White
light

Refracting prism

Wavelength (nm)

400 450 500 550 650600 700

436 nm

P
h

o
to

tr
o

p
ic

 e
ff

e
c

ti
v
e

n
e

s
s

1.0

0.8

0.6

0.4

0.2

0



© 2014 Pearson Education, Inc.

Figure 31.12a 

(a) Light wavelengths below 500nm induce
curvature.
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Figure 31.12b

(b) Blue light induces the most curvature
of coleoptiles.
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 Different plant responses can be mediated by the 

same or different photoreceptors

 There are two major classes of light receptors: 

blue-light photoreceptors and phytochromes, 

photoreceptors that absorb mostly red light
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Blue-Light Photoreceptors

 Various blue-light photoreceptors control 

phototropism (movement in response to light), 

stomatal opening, and hypocotyl elongation
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Phytochrome Photoreceptors

 Phytochromes are pigments that regulate many of a 

plant’s responses to light throughout its life

 These responses include seed germination and 

shade avoidance
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 Phytochromes and seed germination: Many 

seeds remain dormant until light conditions are 

optimal

 In the 1930s, scientists at the U.S. Department of 

Agriculture determined the action spectrum for light-

induced germination of lettuce seeds
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 Red light increased germination, while far-red light 

inhibited germination

 The photoreceptor responsible for the opposing 

effects of red and far-red light is a phytochrome
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Figure 31.13
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Figure 31.13a

Dark (control)
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Figure 31.13b

DarkRed



© 2014 Pearson Education, Inc.

Figure 31.13c
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Figure 31.13d
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Figure 31.13e
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 Phytochromes exist in two photoreversible states, 

with conversion of Pr to Pfr triggering many 

developmental responses

 Red light triggers the conversion of Pr to Pfr

 Far-red light triggers the conversion of Pfr to Pr

 The conversion to Pfr is faster than the conversion 

to Pr

 Sunlight increases the ratio of Pfr to Pr and triggers 

germination
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Figure 31.14
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 Phytochromes and shade avoidance: The 

phytochrome system also provides the plant with 

information about the quality of light

 Leaves in the canopy absorb red light

 Shaded plants receive more far-red than red light

 In the “shade avoidance” response, the 

phytochrome ratio shifts in favor of Pr when a tree is 

shaded

 This shift induces the vertical growth of the plant
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Biological Clocks and Circadian Rhythms

 Many plant processes oscillate during the day

 Many legumes lower their leaves in the evening 

and raise them in the morning, even when kept 

under constant light or dark conditions
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Figure 31.15

Noon 10:00 PM
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Figure 31.15a

Noon
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Figure 31.15b

10:00 PM
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 Circadian rhythms are cycles that are about 24 

hours long and are governed by an internal “clock”

 Circadian rhythms can be entrained to exactly 24 

hours by the day/night cycle

 The clock may depend on synthesis of a protein 

regulated through feedback control
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The Effect of Light on the Biological Clock

 Phytochrome conversion marks sunrise and sunset, 

providing the biological clock with environmental 

cues
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Photoperiodism and Responses to Seasons

 Photoperiod, the relative lengths of night and day, is 

the environmental stimulus plants use most often to 

detect the time of year

 Photoperiodism is a physiological response to 

photoperiod
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Photoperiodism and Control of Flowering

 Some processes, including flowering in many 
species, require a certain photoperiod

 Plants that flower when a light period is shorter than 
a critical length are called short-day plants

 Plants that flower when a light period is longer than 
a certain number of hours are called long-day 
plants

 Flowering in day-neutral plants is controlled by 
plant maturity, not photoperiod
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 Critical night length: In the 1940s, researchers 
discovered that flowering and other responses to 
photoperiod are actually controlled by night length, 
not day length
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 Short-day plants are governed by whether the 

critical night length sets a minimum number of 

hours of darkness

 Long-day plants are governed by whether the 

critical night length sets a maximum number of 

hours of darkness
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Figure 31.16
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 Red light can interrupt the nighttime portion of the 

photoperiod

 A flash of red light followed by a flash of far-red 

light does not disrupt night length

 Action spectra and photoreversibility experiments 

show that phytochrome is the pigment that 

receives red light
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Figure 31.17
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 Some plants flower after only a single exposure to 

the required photoperiod

 Other plants need several successive days of the 

required photoperiod

 Still others need an environmental stimulus in 

addition to the required photoperiod

 For example, vernalization is a pretreatment with 

cold to induce flowering
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A Flowering Hormone?

 Photoperiod is detected by leaves, which cue buds 

to develop as flowers

 The flowering signal is called florigen

 Florigen may be a protein governed by the 

FLOWERING LOCUS T (FT) gene
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Figure 31.18
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Concept 31.3: Plants respond to a wide variety of 
stimuli other than light

 Because of immobility, plants must adjust to a range 

of environmental circumstances through 

developmental and physiological mechanisms
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Gravity

 Response to gravity is known as gravitropism

 Roots show positive gravitropism by growing 

downward; shoots show negative gravitropism by 

growing upward

 Plants may detect gravity by the settling of 

statoliths, dense cytoplasmic components
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Figure 31.19

(a) Primary root of maize
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Figure 31.19a
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Figure 31.19b
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Figure 31.19c
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Figure 31.19d
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 Some mutants that lack statoliths are still capable 

of gravitropism

 Mechanical pulling on proteins that connect the 

protoplast to the cell wall may aid in gravity 

detection

 Dense organelles and starch granules may also 

contribute to gravity detection
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Mechanical Stimuli

 The term thigmomorphogenesis refers to 

changes in form that result from mechanical 

disturbance

 Rubbing stems of young plants a couple of times 

daily results in plants that are shorter than controls
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Figure 31.20
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 Thigmotropism is growth in response to touch

 It occurs in vines and other climbing plants

 Another example of a touch specialist is the 

sensitive plant, Mimosa pudica, which folds its 

leaflets and collapses in response to touch

 Rapid leaf movements in response to mechanical 

stimulation are examples of transmission of 

electrical impulses called action potentials
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Figure 31.21

(a) Unstimulated state (leaflets
spread apart)

(b) Stimulated state (leaflets folded)
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Figure 31.21a

(a) Unstimulated state (leaflets spread apart)
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Figure 31.21b

(b) Stimulated state (leaflets folded)



© 2014 Pearson Education, Inc.

Environmental Stresses

 Environmental stresses have a potentially adverse 

effect on survival, growth, and reproduction

 Stresses can be abiotic (nonliving) or biotic (living)

 Abiotic stresses include drought, flooding, salt 

stress, heat stress, and cold stress

 Biotic stresses include herbivores and pathogens
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Drought

 During drought, plants reduce transpiration by 
closing stomata, reducing exposed surface area, 
or even shedding their leaves
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Flooding

 Enzymatic destruction of root cortex cells creates 

air tubes that help plants survive oxygen deprivation 

during flooding
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Figure 31.22
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Figure 31.22a
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Figure 31.22b
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Salt Stress

 Salt can lower the water potential of the soil solution 

and reduce water uptake

 Plants respond to salt stress by producing solutes 

tolerated at high concentrations

 This process keeps the water potential of cells more 

negative than that of the soil solution
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Heat Stress

 Excessive heat can denature a plant’s enzymes

 Heat-shock proteins, which help protect other 

proteins from heat stress, are produced at high 

temperatures
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Cold Stress

 Cold temperatures decrease membrane fluidity

 Altering lipid composition of membranes is a 

response to cold stress

 Freezing causes ice to form in a plant’s cell walls 

and intercellular spaces

 Water leaves the cell in response to freezing, leading 

to toxic solute concentrations in the cytoplasm
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 Many plants, as well as other organisms, have 

antifreeze proteins that prevent ice crystals from 

growing and damaging cells

 The five classes of antifreeze proteins have 

markedly different amino acid sequences but similar 

structure, indicating they arose through convergent 

evolution
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Concept 31.4: Plants respond to attacks by 
herbivores and pathogens

 Through natural selection, plants have evolved 

defense systems to deter herbivory, prevent 

infection, and combat pathogens
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Defenses Against Herbivores

 Herbivory, animals eating plants, is a stress that 

plants face in any ecosystem

 Plants counter excessive herbivory with physical 

defenses, such as thorns and trichomes, and 

chemical defenses, such as distasteful or toxic 

compounds

 Some plants even “recruit” predatory animals that 

help defend against specific herbivores
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Figure 31.23 
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 Plants damaged by insects can release volatile 

chemicals to warn other plants of the same species

 Arabidopsis can be genetically engineered to 

produce volatile components that attract predatory 

mites
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Defenses Against Pathogens

 A plant’s first line of defense against infection is the 

barrier presented by the epidermis and periderm

 If a pathogen penetrates the dermal tissue, the 

second line of defense is a chemical attack that kills 

the pathogen and prevents its spread

 This second defense system is enhanced by the 

plant’s ability to recognize certain pathogens
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 A virulent pathogen is one that a plant has little 

specific defense against

 An avirulent pathogen is one that may harm but 

does not kill the host plant

Host-Pathogen Coevolution
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 Gene-for-gene recognition involves recognition of 
effector molecules by the protein products of 
specific plant disease resistance (R) genes

 An R protein recognizes a corresponding molecule 
made by the pathogen’s Avr gene

 R proteins activate plant defenses by triggering 
signal transduction pathways

 These defenses include the hypersensitive 
response and systemic acquired resistance
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The Hypersensitive Response

 The hypersensitive response

 Causes localized cell and tissue death near the 

infection site

 Induces production of phytoalexins and PR proteins, 

which attack the specific pathogen

 Stimulates changes in the cell wall that confine the 

pathogen
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Figure 31.24

Infected tobacco leaf with lesions
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Figure 31.24a
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Figure 31.24b

Infected tobacco leaf with lesions
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Systemic Acquired Resistance

 Systemic acquired resistance 

 Causes plant-wide expression of defense genes 

 Protects against a diversity of pathogens

 Provides a long-lasting response

 Methylsalicylic acid travels from an infection site to 

remote areas of the plant where it is converted to 

salicylic acid, which initiates pathogen resistance
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Figure 31.UN01a
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Figure 31.UN01b
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Figure 31.UN02
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Figure 31.UN04
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Figure 31.UN01c

Pea plant (Pisum sativum)



© 2014 Pearson Education, Inc.

Figure 31.UN03
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Figure 31.UN05
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