What is photoperiodism and how is it used in flowering ?

- Photoperiod relative lengths of night and day (light and dark)
- Phytochrome molecules are used by plants to detect sunlight and its duration.
- Phytochrome molecules are composed of proteins plus a light-absorbing part called a chromophore.

- Phytochrome exists in two isometric forms: Pr and Pfr.
- P_r is phytochrome that absorbs red light with a wavelength of 660 nanometers.
- P_{fr} is phytochrome that absorbs far red light with a wavelength of 730 nanometers.
- The two forms revert back and forth depending on the type of light available.

- Pr (Pred) in the presence of red light converts to Pr (Pfar-red).
- P_{fr} (P(far-red) in the presence of far red light converts to P_r (Pred)
- Examples: Lettuce seed germination lettuce seeds, when exposed to red light, begin to germinate. This is because P_r is coverted to P_{fr}.
- Apparently, P_{fr} is needed for seed germination to begin.

Example: Shade avoidance response of a tree

- In a shaded area, little red light reaches the forest floor because leaves absorb red light for photosynthesis. P_{fr} reacts to produce P_r.
- More P_r causes a tree to grow taller (stem tip growth) so it can 'get out of the shade'
- More P_{fr} causes a the tree to grow more lateral branches so it can grow more horizontally and 'claim more space'.

- Circadian rhythms = physiological cycles with a frequency of 24 hours.
- **P**_{fr} appears to reset the circadian-rhythm clock.
- \mathbf{F}_{r} is the form synthesized in plant cells.
- P_r and P_{fr} are in equilibrium during daylight hours.
- P_r accumulates at night. P_{fr} levels drop off and much of it is destroyed at night. Plants are able to respond to varying levels of the two forms of phytochrome.

 Short-day (long-night) plants flower when night exceeds a critical dark period. A flash of light interrupting the dark period prevents flowering.
Chrysanthemums, poinsettias, and soybeans are short-day plants and bloom in spring or autumn.

Long-day (short night) plants flower only if the night is shorter than a critical dark period. They produce summer flowers.

Spinach, radish, lettuce, iris and many cereal plants are long-day plants.

 Day-neutral plants do not require a certain critical dark period to flower. Other environmental factors are necessary.
Tomatoes, rice and dandelions can flower any time during the growing season.

Figure 31.13

Red light has the greatest affect on setting a photoperiod. Far red light cancels out the effect of red light.

Leaves have phytochrome but flower buds produce flowers. Leaves must somehow let the buds know when to start growing. A flowering hormone (florigen ?) is suspected but has not been found yet.

